Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommendation system assumes the input is the result of classification over the entire dataset, not just a subset. If the confusion matrix is based on test data classification, the recommendation may not be valid.
Actual | Predict
|
Class | 0 | 1 | 2 | Description |
ACC | 1.0 | 0.97368 | 0.97368 | Accuracy |
AGF | 1.0 | 0.95711 | 0.98556 | Adjusted F-score |
AGM | 1.0 | 0.97989 | 0.97521 | Adjusted geometric mean |
AM | 0 | -1 | 1 | Difference between automatic and manual classification |
AUC | 1.0 | 0.96875 | 0.98276 | Area under the ROC curve |
AUCI | Excellent | Excellent | Excellent | AUC value interpretation |
AUPR | 1.0 | 0.96875 | 0.95 | Area under the PR curve |
BB | 1.0 | 0.9375 | 0.9 | Braun-Blanquet similarity |
BCD | 0.0 | 0.01316 | 0.01316 | Bray-Curtis dissimilarity |
BM | 1.0 | 0.9375 | 0.96552 | Informedness or bookmaker informedness |
CEN | 0 | 0.07991 | 0.11179 | Confusion entropy |
DOR | None | None | None | Diagnostic odds ratio |
DP | None | None | None | Discriminant power |
DPI | None | None | None | Discriminant power interpretation |
ERR | 0.0 | 0.02632 | 0.02632 | Error rate |
F0.5 | 1.0 | 0.98684 | 0.91837 | F0.5 score |
F1 | 1.0 | 0.96774 | 0.94737 | F1 score - harmonic mean of precision and sensitivity |
F2 | 1.0 | 0.94937 | 0.97826 | F2 score |
FDR | 0.0 | 0.0 | 0.1 | False discovery rate |
FN | 0 | 1 | 0 | False negative/miss/type 2 error |
FNR | 0.0 | 0.0625 | 0.0 | Miss rate or false negative rate |
FOR | 0.0 | 0.04348 | 0.0 | False omission rate |
FP | 0 | 0 | 1 | False positive/type 1 error/false alarm |
FPR | 0.0 | 0.0 | 0.03448 | Fall-out or false positive rate |
G | 1.0 | 0.96825 | 0.94868 | G-measure geometric mean of precision and sensitivity |
GI | 1.0 | 0.9375 | 0.96552 | Gini index |
GM | 1.0 | 0.96825 | 0.98261 | G-mean geometric mean of specificity and sensitivity |
HD | 0 | 1 | 1 | Hamming distance |
IBA | 1.0 | 0.87891 | 0.99881 | Index of balanced accuracy |
ICSI | 1.0 | 0.9375 | 0.9 | Individual classification success index |
IS | 1.54749 | 1.24793 | 1.926 | Information score |
J | 1.0 | 0.9375 | 0.9 | Jaccard index |
LS | 2.92308 | 2.375 | 3.8 | Lift score |
MCC | 1.0 | 0.94696 | 0.93218 | Matthews correlation coefficient |
MCCI | Very Strong | Very Strong | Very Strong | Matthews correlation coefficient interpretation |
MCEN | 0 | 0.125 | 0.1661 | Modified confusion entropy |
MK | 1.0 | 0.95652 | 0.9 | Markedness |
N | 25 | 22 | 29 | Condition negative |
NLR | 0.0 | 0.0625 | 0.0 | Negative likelihood ratio |
NLRI | Good | Good | Good | Negative likelihood ratio interpretation |
NPV | 1.0 | 0.95652 | 1.0 | Negative predictive value |
OC | 1.0 | 1.0 | 1.0 | Overlap coefficient |
OOC | 1.0 | 0.96825 | 0.94868 | Otsuka-Ochiai coefficient |
OP | 1.0 | 0.94143 | 0.95614 | Optimized precision |
P | 13 | 16 | 9 | Condition positive or support |
PLR | None | None | 29.0 | Positive likelihood ratio |
PLRI | None | None | Good | Positive likelihood ratio interpretation |
POP | 38 | 38 | 38 | Population |
PPV | 1.0 | 1.0 | 0.9 | Precision or positive predictive value |
PRE | 0.34211 | 0.42105 | 0.23684 | Prevalence |
Q | None | None | None | Yule Q - coefficient of colligation |
QI | None | None | None | Yule Q interpretation |
RACC | 0.11704 | 0.1662 | 0.06233 | Random accuracy |
RACCU | 0.11704 | 0.16638 | 0.0625 | Random accuracy unbiased |
TN | 25 | 22 | 28 | True negative/correct rejection |
TNR | 1.0 | 1.0 | 0.96552 | Specificity or true negative rate |
TON | 25 | 23 | 28 | Test outcome negative |
TOP | 13 | 15 | 10 | Test outcome positive |
TP | 13 | 15 | 9 | True positive/hit |
TPR | 1.0 | 0.9375 | 1.0 | Sensitivity, recall, hit rate, or true positive rate |
Y | 1.0 | 0.9375 | 0.96552 | Youden index |
dInd | 0.0 | 0.0625 | 0.03448 | Distance index |
sInd | 1.0 | 0.95581 | 0.97562 | Similarity index |
Generated By PyCM Version 4.2